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The Problem of integrable discretization

Consider a completely integrable flow on (P, {·, ·}):

ẋ = f (x) = {H, x} ∃ {Ik(x)} ∈ F(P).

Problem of integrable discretization

To find a family of diffeomorphisms φε : P → P,

x̃ = φε(x) 0 < ε � 1,

φε(x) = x + ε f (x) + O(ε2).

The maps are Poisson w.r.t. {·, ·} on P or w.r.t. some its deformation,
{·, ·}ε = {·, ·}+ O(ε).

The maps possess the necessary number of independent integrals in
involution Ik(x , ε) = Ik(x) + O(ε).
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Hirota-Kimura discretization of the Euler top

ẋi = αixjxk ,

x = (x1, x2, x3) ∈ R3 vector of coordinates, (α1, α2, α3) ∈ R3 vector of
parameters, (ijk) cyclic permutation of (123).

Integrability features:
1 Bi-Hamiltonian structure.
2 Two independent integrals of motion (in involution w.r.t. both PBs).
3 Lax representation.
4 Explicit solutions in terms of elliptic functions.

A class of implicit discretizations [BLS]1:

x̃i − xi = αiγ(x , ε)(x̃j + xj)(x̃k + xk),

where tilde denotes the shift t 7→ t + ε in εZ.

Hirota-Kimura discretization [HK]2:

x̃i − xi = εαi (x̃jxk + xj x̃k).
1A.I. Bobenko, B. Lorbeer, Yu.B. Suris, Jour. Math. Phys., 1998, 39
2R. Hirota, K. Kimura, Jour. Phys. Soc. Japan, 2000, 69
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Hirota-Kimura discretization of the Euler top

The map x̃i − xi = εαi (x̃jxk + xj x̃k) can be written as

x̃ = f (x , ε) = A−1(x , ε)x , A(x , ε) =

 1 −εα1x3 −εα1x2

−εα2x3 1 −εα2x1

−εα3x2 −εα3x1 1

 .

1 Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3). They give an explicit rational map.

2 The map is reversible (therefore birational): f −1(x , ε) = f (x ,−ε).

3 Two independent integrals of motion:

Fi =
1− ε2αkαix

2
j

1− ε2αiαjx2
k

, F1F2F3 = 1.

4 Explicit solutions in terms of elliptic functions.

5 Invariant measure form and bi-Hamiltonian structure [PS]3.

6 A Lax representation is still missing.

3M. Petrera, Yu.B. Suris, to appear in Math. Nach., 2008
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Hirota-Kimura or Kahan?

The Hirota-Kimura discretization of the Euler top seemed to be an isolated
curiosity.

Kahan discretization of quadratic vector fields [K]4:

ẋ = Q(x) + Bx ,

Q : Rn → Rn is a quadratic form, B ∈ Matn×n. Then

x̃ − x

2ε
= Q(x , x̃) +

1

2
B(x + x̃),

with Q(x , x̃) = 1
2 [Q(x + x̃)− Q(x)− Q(x̃)] is the symmetric bilinear form

corresponding to the quadratic form Q.

XEquations for x̃ are always linear and the map is always reversible and
birational.

We use the term Hirota-Kimura (HK) discretization for the Kahan’s
discretization in the context of integrable systems.

4W. Kahan, Unconventional numerical methods for trajectory calculations, Unpublished
lecture notes, 1993
M. Petrera (Phys. Dep., Roma III University) Bilinear discretization of quadratic vector fields 5 / 27



Two-dimensional integrable systems

Lotka-Volterra system:{
ẋ = x(1− y),
ẏ = y(x − 1).

7→
{

x̃ − x = ε (x + x̃ − x̃y − xỹ ) ,
ỹ − y = −ε (y + ỹ − x̃y − xỹ ) .

L: one orbit of the explicit Euler method with ε = 0.01; R: three orbits of the Kahan’s
discretization with ε = 0.1.

Non-spiralling behavior.

Kahan integrator for this system is Poisson [S]5.
5J.M. Sanz-Serna, Appl. Numer. Math., 1994, 16
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Two-dimensional integrable systems

1 If ε = ±1 the map is integrable. If ε = 1 it reduces to ˜̃xx = x̃ (2− x̃ ) which
preserves

I =

[
(x − y)(x + y − 2)

xy

]2

.

2 If ε 6= ±1 an integral of motion (if exists), discretizing H = x + y − log(xy),
is unknown.

3 But numerical experiments indicate non-integrability.
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Two-dimensional integrable systems

Weierstrass ℘ function ODE:{
ẋ = y ,
ẏ = 6x2 − g2/2.

7→
{

x̃ − x = ε (y + ỹ ) ,
ỹ − y = ε (12xx̃ − g2) .

The first integral of the continuous system reads

g3 = 4x3 − g2x − y2.

The first integral of the discrete system reads

I =
4x3 − g2x − y2 + 4ε2x(g2x − y2) + 4ε4g2

2 x

1− 12ε2x
.

The discrete map is Poisson:

{x , y} = 1− 12ε2x .
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Problem

Let ẋ = f (x) be an integrable quadratic vector field. Is its HK discretization
integrable?

Conjecture (M. Petrera, A. Pfadler, Yu.B. Suris to appear in Exp. Math., 2008)

For any algebraically completely integrable system with a quadratic vector field, its
HK discretization remains algebraically completely integrable.

This is supported by:

Euler and Lagrange tops (Hirota and Kimura).
Clebsch system.
so(3) Suslov system (Dragovic and Gajic6).
A class of 3-dimensional bi-Hamiltonian systems.

Preliminary results (with Yu.B. Suris):

Zhukovsky-Volterra system.
so(4) Euler top.
Volterra and Toda lattices.
Classical Gaudin magnet.
Integrable Henon-Heiles systems.

6http://arxiv.org/abs/0807.2966
M. Petrera (Phys. Dep., Roma III University) Bilinear discretization of quadratic vector fields 9 / 27



A flavor of the HK discrete Clebsch system (Yu.B. Suris, A. Pfadler)

The Clebsch system describes the motion of a rigid body in an ideal fluid:

ṁ1 = (ω3 − ω2)p2p3,
ṁ2 = (ω1 − ω3)p3p1,
ṁ3 = (ω2 − ω1)p1p2,
ṗ1 = m3p2 −m2p3,
ṗ2 = m1p3 −m3p1,
ṗ3 = m2p1 −m1p2.

(ω1, ω2, ω3) ∈ R3 parameters, m = (m1,m2,m3) ∈ R3, p = (p1, p2, p3) ∈ R3.

It is Hamiltonian w.r.t. Lie-Poisson brackets in e(3).

Four functionally independent integrals of motion:

Ii = p2
i +

m2
j

ωk − ωi
+

m2
k

ωj − ωi
,

I4 = m1p1 + m2p2 + m3p3.
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A flavor of the HK discrete Clebsch system

HK discretization:(
m̃
p̃

)
= f (m, p, ε) = M−1(m, p, ε)

(
m
p

)
,

M(m, p, ε) =


1 0 0 0 εω23p3 εω23p2

0 1 0 εω31p3 0 εω31p1

0 0 1 εω12p2 εω12p1 0
0 εp3 −εp2 1 −εm3 εm2

−εp3 0 εp1 εm3 1 −εm1

εp2 −εp1 0 −εm2 εm1 1

 ,

with ωij = ωi − ωj .

Numerators and denominators of components of m̃, p̃ are polynomials of
degree 6:

31 monomials in numerators of p̃i

41 monomials in numerators of m̃i

28 monomials in the common denominator

The numerator of the ˜̃p1, as a polynomial of mk , pk , ωk , contains 1.647.595
terms!
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A flavor of the HK discrete Clebsch system

Orbits with ω1 = 0.1, ω2 = 0.2, ω3 = 0.3, ε = 1; (m0, p0) = (1, 1, 1, 1, 1, 1).
L: projections to (m1,m2,m3); R: projections to (p1, p2, p3).

M. Petrera (Phys. Dep., Roma III University) Bilinear discretization of quadratic vector fields 12 / 27



A flavor of the HK discrete Clebsch system

In [PPS]7 we presented an experimental method for a rigorous study of the
integrability of HK discretizations.

Goal

Existence, for every initial point (m, p) ∈ R6, of a four-dimensional pencil of
quadrics containing the orbit of this point.

Existence of four functionally independent integrals of motion. There is one
simple integral,

K =
p2

1 + p2
2 + p2

3

1− ε2(ω1p2
1 + ω2p2

2 + ω3p2
3)

and three very big integrals.

This remains true also for an arbitrary flow of the Clebsch system.

Our proofs are computer assisted. A general structure behind the integrability
of the HK mechanism remains unknown.

Nothing is known about the Lax representation and the existence of an
invariant Poisson structure.

7M. Petrera, A. Pfadler,Yu.B. Suris to appear in Exp. Math., 2008
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3-dimensional HK-type discrete systems (A.N.W. Hone)

The Euler top is the most famous three-dimensional bi-Hamiltonian system.
Its HK discretization provides a completely integrable discrete-time system.

In [GN]8 the authors construct a list of all (12) non-trivial bi-Hamiltonian
flows associated with pairs of real 3-dim. Lie algebras:

PdH = 0, ẋ = (ẋ , ẏ , ż) = −PdK = −1

c
QdH, QdK = 0,

c = c(x , y , z) conformal factor. Each flow preserves the measure form

ω = c dx ∧ dy ∧ dz .

Aim
To construct the HK discretization of GN bi-Hamiltonian quadratic vector fields
associated with real 3-dim. Lie algebras

To begin with, we shall be concerned with only 6 out of the 12 flows, the
ones which have non-trascendental integrals of motions.

8H. Gümral, Y. Nutku, Journ. Math. Phys., 1993, 34
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GN bi-Hamiltonian flows with non-transcendental invariants:

E1 : ẋ = −x2, ẏ = −xy , ż = 2y2 + xz , (P(1), c−1
1 Q(1)),

E2 : ẋ = −x2, ẏ = xy , ż = −2y2 + xz , (P(2), c−1
2 Q(2)),

E3 : ẋ = −xz , ẏ = −yz , ż = x2 + y2, (P(3), c−1
3 Q(3)),

E4 : ẋ = −xz , ẏ = yz , ż = x2 − y2, (P(4), c−1
4 Q(4)),

E5 : ẋ = xy , ẏ = −x2, ż = y(2x − z), (P(5), c−1
5 Q(5)),

E6 : ẋ = y(2z − x), ẏ = x2 − z2, ż = y(z − 2x). (P(6), c−1
6 Q(6)).

For instance, E1 is bi-Hamiltonian w.r.t. (P(1), c−1
1 Q(1)),

P
(1)
12 = {x , y} = 0, P

(1)
23 = {y , z} = y , P

(1)
31 = {z , x} = −x ,

Q
(1)
12 = {x , y} = x , Q

(1)
23 = {y , z} = z , Q

(1)
31 = {z , x} = −2y ,

P(1)dH1 = 0, P(1)dK1 =
1

c1
Q(1)dH1 Q(1)dK1 = 0, c1 =

1

x2
,

with H1 = y/x and K1 = zx + y2.

E6 corresponds to a particular case of of the so(3) Euler top.

M. Petrera (Phys. Dep., Roma III University) Bilinear discretization of quadratic vector fields 15 / 27



i P
(i)
12 P

(i)
23 P

(i)
31 Q

(i)
12 Q

(i)
23 Q

(i)
31 Hi Ki ci

1 0 y −x x z 2y
y

x
zx + y2 1

x2

2 0 −y −x x z 2y xy zx + y2 1

3 0 y −x z x y
y

x
1
2
(x2 + y2 + z2)

1

x2

4 0 −y −x z x y xy 1
2
(x2 + y2 + z2) 1

5 0 x y x z 2y 1
2
(x2 + y2) zx + y2 −1

6 x z 2y z x y zx + y2 1
2
(x2 + y2 + z2) −1

There are just 5 independent Lie-Poisson structures,

P(1) = P(3), P(2) = P(4), P(5), P(6) = Q(1) = Q(2) = Q(5), Q(3) = Q(4) = Q(6),

corresponding to A3,3, e(1, 1), e(2), sl(2, R), so(3) and with Casimir functions

H1 = H3, H2 = H4, H5, H6 = K1 = K2 = K5, K3 = K4 = K6.
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HK discretization

Let x = (x , y , z) = (x1, x2, x3). Then:

ẋi 7→
x̃i − xi

2ε
, xjxk 7→

x̃jxk + xj x̃k

2
.

Theorem. The HK discretizations of the quadratic vector fields Ei , 1 ≤ i ≤ 6,
read

dEi : x̃ = A−1
i (x; ε)x = Ai (x̃;−ε)x.

The maps dEi are completely integrable. In particular:

1 They have two integrals of motion, Hi (ε),Ki (ε).

2 They preserve the volume form

Ωi =
ci

HiKi
dx ∧ dy ∧ dz , 1 ≤ i ≤ 6.

3 They admit the compatible invariant Poisson structures (P(i)(ε), c−1
i Q(i)(ε)).

4 They admit explicit solutions.
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i Ai (x; ε) Hi (ε) Ki (ε)

1

0@1 + 2εx 0 0
εy 1 + εx 0
−εz −4εy 1− εx

1A H1
K1

1− ε2x2

2

0@1 + 2εx 0 0
−εy 1− εx 0
−εz 4εy 1− εx

1A H2

1− ε2x2

K2

1− ε2x2

3

0@1 + εz 0 εx
0 1 + εz εy

−2εx −2εy 1

1A H3
K3

1 + ε2(x2 + y2)

4

0@1 + εz 0 εx
0 1− εz −εy

−2εx 2εy 1

1A H4

1 + ε2(x2 + y2)

K4

1 + ε2(x2 + y2)

5

0@1− εy −εx 0
2εx 1 0
−2εy −ε(2x − z) 1 + εy

1A H5

1 + ε2x2

K5

1 + ε2x2

6

0@1 + εy ε(x − 2z) −2εy
−2εx 1 2εz
2εy ε(2x − z) 1− εy

1A H6

1− 3ε2xz

K6

1− 3ε2xz
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First deformed Poisson structure:

i P
(i)
12 (ε) P

(i)
23 (ε) P

(i)
31 (ε)

1 0 y
`
1− ε2x2

´
−x

`
1− ε2x2

´
2 0 −y

`
1 + ε2x2

´
−x

`
1− ε2x2

´
3 0 y

ˆ
1 + ε2(x2 + y2)

˜
−x

ˆ
1 + ε2(x2 + y2)

˜
4 0 −y

ˆ
1− ε2(x2 − y2)

˜
−x

ˆ
1 + ε2(x2 − y2)

˜
5 0 x

`
1− ε2y2

´
y

`
1 + ε2x2

´
6 x

`
1 + 3ε2y2

´
z

`
1 + 3ε2y2

´
2y

`
1− 3ε2xz

´
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Second deformed Poisson structure:

i Q
(i)
12 (ε) Q

(i)
23 (ε) Q

(i)
31 (ε)

1 x
z + ε2x(zx + 2y2)

1− ε2x2
2y

2 x
`
1− ε2x2

´
z + ε2x(zx + 2y2) 2y

`
1− ε2x2

´
3 z

x
`
1− ε2z

´
1 + ε2(x2 + y2)

y
`
1− ε2z

´
1 + ε2(x2 + y2)

4 z
ˆ
1 + ε2(x2 + y2)

˜
x

`
1− ε2z2

´
y

`
1− ε2z2

´
5 x

`
1 + ε2x2

´
z − ε2x(xz + 2y2) 2y

`
1 + ε2x2

´
6 z + 3

2
ε2x(x2 + y2 − z2) x + 3

2
ε2z(z2 + y2 − x2) y

`
1− 3ε2xz

´
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For instance, i = 4: ẋ = −zx ,
ẏ = xy ,
ż = x2 − y2,

7→

 x̃ − x = −ε(z̃x + zx̃),
ỹ − y = ε(ỹ x + y x̃),
z̃ − z = 2ε(x̃x − ỹ y),

H4(ε) =
xy

1 + ε2(x2 + y2)
, K4(ε) =

1

2

x2 + y2 + z2

1 + ε2(x2 + y2)
,

{x , y} = 0, {y , z} = −y
[
1− ε2(x2 − y2)

]
, {z , x} = −x

[
1 + ε2(x2 − y2)

]
,

{x , y} = z
[
1 + ε2(x2 + y2)

]
, {y , z} = x

(
1− ε2z2

)
, {z , x} = y

(
1− ε2z2

)
.



xn = sn (v/2)

[
dn(u + nv)

cn(v/2)
+

kcn(u + nv)

dn(v/2)

]
,

yn = sn (v/2)

[
dn(u + nv)

cn(v/2)
− kcn(u + nv)

dn(v/2)

]
,

zn = 2 k sn (v/2) sn(u + nv),

u and v expressed in terms of the first integrals.
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Systems with one transcendental invariant

We considered 2 GN systems with one transcendental invariants:

E7 : ẋ = −x2, ẏ = −ξxy , ż = 2ξy2 + xz ,

E8 : ẋ = −x2, ẏ = −x(x + y), ż = 2y(x + y) + xz ,

with |ξ| ∈ (0, 1). Note that E7

∣∣
ξ=1

= E1 and E7

∣∣
ξ=−1

= E2.

P(7)dH7 = 0, P(7)dK7 =
1

c7
Q(7)dH7, Q(7)dK7 = 0,

Q(7) = P(6), P
(7)
12 = 0, P

(7)
23 = ξy , P

(7)
31 = −x ,

H7 = yx−ξ, K7 = H6 = zx + y2, c7 = x−(ξ+1),

x(t) =
1

t + α
, y(t) = β(t + α)−ξ, z(t) = (t + α)

[
γ − β2(t + α)−2ξ

]
,

with H7 = β and K7 = γ.
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Explicit solutions of dE7 (ε = 1/2):

xn =
1

n + α
, (1)

yn =
αβ

n + α

Γ (n + 1 + α− ξ/2) Γ (α + ξ/2)

Γ (n + α + ξ/2) Γ (α + 1− ξ/2)
, (2)

zn =
αγ[4(n + α)2 − 1]

(4α2 − 1)(n + α)
+

4α2β2ξ[4(n + α)2 − 1]Γ2 (α + ξ/2)

Γ2 (α + 1− ξ/2) (n + α)
Wn, (3)

with

Wn =
n−1∑
j=0

[2(j + 1 + α)− ξ]Γ2 (j + 1 + α− ξ/2)

[2(j + α) + 3][2(j + α) + ξ][4(j + α)2 − 1]Γ2 (j + α + ξ/2)
.

From (1) and (2) one gets:

Ĥ7 =
yn

xn

Γ
(
x−1
n + ξ/2

)
Γ

(
x−1
n + 1− ξ/2

) .

The second invariant is given implicitly by (3).
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Diophantine integrability

Diophantine integrability test [H]9: simple criterion to detect the integrability
of rational maps over Q.

For a map whose n-th iterate has components xn = pn/qn ∈ Q, the height of
xn is H(xn) = max(|pn|, |qn|) and the logarithmic height is h(xn) = log H(xn).

A map is Diophantine integrable if hn of the iterates of all orbits has at most
polynomial growth in n:

E (O) = 0, ∀O, E (O) = lim
n→∞

1

n
log[h(xn)].

It is similar to algebraic entropy: measure of the height growth of rational
functions generated by rational maps. The height is the maximum of the
degrees of the polynomials in the numerator and denominator as functions of
initial data.

9R. Halburd, Journ. Phys. A, 2005, 38
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Diophantine integrability

Disadvantage of algebraic entropy: to guess a recursive relation to generate
the degrees of polynomials
Advantage of Diophantine entropy: quick numerical implementation. If a
map is Diophantine integrable then an plot of log h(xn) vs. log n looks
asymptotically like a straight line, otherwise it will have an exponential
growth.
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L: 200 iterates of dE3; R: 17 iterates of dLV .

But it is no clear how the Diophantine integrability is related with other
definitions of integrability.
For 2-dim. and 3-dim. maps Diophantine integrability is a necessary
condition for algebraic integrability.
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Diophantine integrability

Theorem. The discrete systems dEi , 1 ≤ i ≤ 8, are all Diophantine integrable.

The above claim may be easily supported by numerical observations.
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L: 1000 iterates of dE4; R: log h(xn) vs. log n for 125 iterates of dE4.

dE7 and dE8 provide the first examples of discrete integrable systems with
transcendental invariants that are also Diophantine integrable.
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Concluding remarks

Goals
Conjecture. For any algebraically completely integrable system with a
quadratic vector field, its HK discretization remains algebraically completely
integrable.

We used the HK procedure to construct several integrable discrete systems.

Huge advantage: the procedure is systematic and algorithmic.

Open problems (work in progress)

Preliminary results:

Zhukovsky-Volterra system.
so(4) Euler top.
Volterra and Toda lattices.
Classical Gaudin magnet.
Integrable Henon-Heiles systems.

There should be some deep mathematical structure behind the HK
discretization. If our conjecture is true it should be related to addition
theorems for multi-dimensional theta functions.
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