Poncelet Porisms and Beyond

Vladimir Dragović

IHES, Paris / Mathematical Institute SANU, Belgrade

ENIGMA 2008
Trieste, 15 October 2008

- V. Dragović, M. Radnović, Hyperelliptic Jacobians as Billiard Algebra of Pencils of Quadrics: Beyond Poncelet Porisms, Advances in Mathematics 219 (2008) // arXiv:0710.3656
- V. Dragović, M. Radnović, Geometry of integrable billiards and pencils of quadrics, Journal de Mathématiques Pures et Appliquées 85 (2006)
- V. Dragović, Multi-valued hyperelliptic continued fractions of generalized Halphen type, arXiv: 0809.4931
- V. Dragović, M. Radnović, Hyperelliptic Jacobians as Billiard Algebra of Pencils of Quadrics: Beyond Poncelet Porisms, Advances in Mathematics 219 (2008) // arXiv:0710.3656
- V. Dragović, M. Radnović, Geometry of integrable billiards and pencils of quadrics, Journal de Mathématiques Pures et Appliquées 85 (2006)
- V. Dragović, Multi-valued hyperelliptic continued fractions of generalized Halphen type, arXiv: 0809.4931

Preliminaries

Poncelet Theorem and Elliptic Billiards
Confocal Families of Quadrics and Billiards in Euclidean Space
Poncelet Theorem in Projective Space over an Arbitrary Field
Billiard Law and Algebraic Structure on the Abelian Variety \mathcal{A}_{ℓ}
Billiard Algebra and Theorems of Poncelet Type
Weak Poncelet Trajectories
Generalizations of Theorems of Weyr and Griffiths-Harris
Poncelet-Darboux Grid and Higher Dimensional Generalizations
Continued Fractions
Basic Algebraic Lemma
Hyperelliptic Halphen-Type Continued Fractions
Periodicity and Symmetry
Invariant Approach
Multi-valued divisor dynamics

The Poncelet Theorem

Let two conics be given in the plane. If there is a closed polygonal line inscribed in one of them and circumscribed about another one, then there is infinitely many such lines and they all have the same number of edges.

Cayley's Condition

$\mathcal{C}:(C x, x)=0, \mathcal{D}:(D x, x)=0-$ two conics in the projective plane

Cayley's Condition for Even n

There is a polygon with n vertices inscribed in \mathcal{C} and circumscribed about \mathcal{D} if and only if:

$$
\left.\begin{array}{llll}
C_{3} & C_{4} & \ldots & C_{p+1} \\
C_{4} & C_{5} & \ldots & C_{p+2} \\
& & \ldots & \\
C_{p+1} & C_{p+2} & \ldots & C_{2 p-1}
\end{array} \right\rvert\,=0, \text { for } n=2 p
$$

where $\sqrt{\operatorname{det}(C+x D)}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots$ is the Taylor expansion around $x=0$.

Cayley's Condition

$\mathcal{C}:(C x, x)=0, \mathcal{D}:(D x, x)=0-$ two conics in the projective plane

Cayley's Condition for Odd n

There is a polygon with n vertices inscribed in \mathcal{C} and circumscribed about \mathcal{D} if and only if:

$$
\left.\begin{array}{llll}
C_{2} & C_{3} & \ldots & C_{p+1} \\
C_{3} & C_{4} & \ldots & C_{p+2} \\
& & \ldots & \\
C_{p+1} & C_{p+2} & \ldots & C_{2 p}
\end{array} \right\rvert\,=0 \text { for } n=2 p+1
$$

where $\sqrt{\operatorname{det}(C+x D)}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots$ is the Taylor expansion around $x=0$.

Billiard within Ellipse

Focal Property of Elliptical Billiard

Focal Property of Elliptical Billiard

Caustics of Elliptical Billiard

Caustics of Elliptical Billiard

Periodical Trajectories of Elliptical Billiard

Applied to a pair of confocal conics \mathcal{C}, \mathcal{D}, the Cayley's condition gives an analytical condition for periodicity of a billiard trajectory within \mathcal{C} with \mathcal{D} as a caustic.

Definition of Confocal Family

A family of confocal quadrics in the d-dimensional Euclidean space \mathbf{E}^{d} is a family of the form:

$$
\mathcal{Q}_{\lambda}: \frac{x_{1}^{2}}{a_{1}-\lambda}+\cdots+\frac{x_{d}^{2}}{a_{d}-\lambda}=1 \quad(\lambda \in \mathbf{R})
$$

where a_{1}, \ldots, a_{d} are real constants.

Chasles Theorem

Chasles Theorem

Any line in \mathbf{E}^{d} is tangent to exactly $d-1$ quadrics from a given confocal family. Tangent hyper-planes to these quadrics, constructed at the points of tangency with the line, are orthogonal to each other.

Theorem
Two lines that satisfy the reflection law on a quadric \mathcal{Q} in \mathbf{E}^{d} are tangent to the same $d-1$ quadrics confocal with \mathcal{Q}.

Generalized Poncelet Theorem

Consider a closed billiard trajectory within quadric \mathcal{Q} in \mathbf{E}^{d}. Then all other billiard trajectories within \mathcal{Q}, that share the same $d-1$ caustics, are also closed. Moreover, all these closed trajectories have the same number of vertices.

Generalized Cayley Condition

The condition on a billiard trajectory inside ellipsoid \mathcal{Q}_{0} in \mathbf{E}^{d}, with nondegenerate caustics $\mathcal{Q}_{\alpha_{1}}, \ldots, \mathcal{Q}_{\alpha_{d-1}}$, to be perodic with period $n \geq d$ is:

$$
\operatorname{rank}\left(\begin{array}{cccc}
B_{n+1} & B_{n} & \ldots & B_{d+1} \\
B_{n+2} & B_{n+1} & \ldots & B_{d+2} \\
\ldots & & & \\
\ldots & & & \\
B_{2 n-1} & B_{2 n-2} & \ldots & B_{n+d-1}
\end{array}\right)<n-d+1
$$

where
$\sqrt{\left(x-a_{1}\right) \ldots\left(x-a_{d}\right)\left(x-\alpha_{1}\right)\left(x-\alpha_{d-1}\right)}=B_{0}+B_{1} x+B_{2} x^{2}+\ldots$
and all a_{1}, \ldots, a_{d} are distinct and positive.

Reflection Law in Projective Space

Let \mathcal{Q}_{1} and \mathcal{Q}_{2} be two quadrics that meet transversely. Denote by u the tangent plane to \mathcal{Q}_{1} at point x and by z the pole of u with respect to \mathcal{Q}_{2}. Suppose lines ℓ_{1} and ℓ_{2} intersect at x, and the plane containing these two lines meet u along ℓ.

If lines $\ell_{1}, \ell_{2}, x z, \ell$ are coplanar and harmonically conjugated, we say that rays ℓ_{1} and ℓ_{2} obey the reflection law at the point x of the quadric \mathcal{Q}_{1} with respect to the confocal system which contains \mathcal{Q}_{1} and \mathcal{Q}_{2}.

If we introduce a coordinate system in which quadrics \mathcal{Q}_{1} and \mathcal{Q}_{2} are confocal in the usual sense, reflection defined in this way is same as the standard one.

One Reflection Theorem

Suppose rays ℓ_{1} and ℓ_{2} obey the reflection law at x of \mathcal{Q}_{1} with respect to the confocal system determined by quadrics \mathcal{Q}_{1} and \mathcal{Q}_{2}. Let ℓ_{1} intersects \mathcal{Q}_{2} at y_{1}^{\prime} and y_{1}, u is a tangent plane to \mathcal{Q}_{1} at x, and z its pole with respect to \mathcal{Q}_{2}. Then lines $y_{1}^{\prime} z$ and $y_{1} z$ respectively contain intersecting points y_{2}^{\prime} and y_{2} of ray ℓ_{2} with \mathcal{Q}_{2}. Converse is also true.

Corollary

Let rays ℓ_{1} and ℓ_{2} obey the reflection law of \mathcal{Q}_{1} with respect to the confocal system determined by quadrics \mathcal{Q}_{1} and \mathcal{Q}_{2}. Then ℓ_{1} is tangent to \mathcal{Q}_{2} if and only if is tangent ℓ_{2} to $\mathcal{Q}_{2} ; \ell_{1}$ intersects \mathcal{Q}_{2} at two points if and only if ℓ_{2} intersects \mathcal{Q}_{2} at two points.

Next assertion is crucial for proof of the Poncelet theorem.

Double Reflection Theorem

Suppose that $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ are given quadrics and ℓ_{1} line intersecting \mathcal{Q}_{1} at the point x_{1} and \mathcal{Q}_{2} at y_{1}. Let u_{1}, v_{1} be tangent planes to $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ at points x_{1}, y_{1} respectively, and z_{1}, w_{1} their poles with respect to \mathcal{Q}_{2} and \mathcal{Q}_{1}. Denote by x_{2} second intersecting point of the line $w_{1} x_{1}$ with \mathcal{Q}_{1}, by y_{2} intersection of $y_{1} z_{1}$ with \mathcal{Q}_{2} and by $\ell_{2}, \ell_{1}^{\prime}, \ell_{2}^{\prime}$ lines $x_{1} y_{2}, y_{1} x_{2}, x_{2} y_{2}$. Then pairs $\ell_{1}, \ell_{2} ; \ell_{1}, \ell_{1}^{\prime} ; \ell_{2}, \ell_{2}^{\prime}$; $\ell_{1}^{\prime}, \ell_{2}^{\prime}$ obey the reflection law at points x_{1} (of \mathcal{Q}_{1}), y_{1} (of \mathcal{Q}_{2}), y_{2} (of \mathcal{Q}_{2}), x_{2} (of \mathcal{Q}_{1}) respectively.

Set \mathcal{A}_{ℓ}

\mathcal{A}_{ℓ} - the family of all lines which are tangent to the same $d-1$ quadrics as ℓ

The set \mathcal{A}_{ℓ} is invariant to the billiard reflection on any of the confocal quadrics.

Theorem
For any two given lines x and y from \mathcal{A}_{ℓ}, there is a system of at most $d-1$ quadrics from the confocal family, such that the line y is obtained from x by consecutive reflections on these quadrics.

s-skew lines

Definition

For two given lines x and y from \mathcal{A}_{ℓ} we say that they are s-skew if s is the smallest number such that there exist a system of $s+1 \leq d-1$ quadrics $\mathcal{Q}_{k}, k=1, \ldots, s+1$ from the confocal family, such that the line y is obtained from x by consecutive reflections on \mathcal{Q}_{k}. If the lines x and y intersect, they are 0-skew. They are (-1)-skew if they coincide.

Weak Poncelet Trajectories

Definition

Suppose that a system S of n quadrics $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{n}$ from the confocal family is given. For a system of lines $\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ in \mathcal{A}_{ℓ} such that each pair of successive lines $\mathcal{O}_{i}, \mathcal{O}_{i+1}$ satisfies the billiard reflection law at $\mathcal{Q}_{i+1}(0 \leq i \leq n-1)$, we say that it forms an s-weak Poncelet trajectory of length n associated to the system S if the lines \mathcal{O}_{0} and \mathcal{O}_{n} are s-skew.

Theorem. The existence of an s-weak Poncelet trajectory of length r is equivalent to:

$$
\operatorname{rank}\left(\begin{array}{llll}
B_{d+1} & B_{d+2} & \ldots & B_{m+1} \\
B_{d+2} & B_{d+3} & \ldots & B_{m+2} \\
\ldots & \ldots & \ldots & \ldots \\
B_{d+m-s-2} & B_{d+m-s-1} & \ldots & B_{r-1}
\end{array}\right)<m-d+1
$$

when $r+s+1=2 m$ and

$$
\operatorname{rank}\left(\begin{array}{llll}
B_{d} & B_{d+1} & \ldots & B_{m+1} \\
B_{d+1} & B_{d+2} & \ldots & B_{m+2} \\
\ldots & \ldots & \ldots & \ldots \\
B_{d+m-s-2} & B_{d+m-s-1} & \ldots & B_{r-1}
\end{array}\right)<m-d+2
$$

when $r+s+1=2 m+1$.

With $B_{0}, B_{1}, B_{2}, \ldots$, we denoted the coefficients in the Taylor expansion of function $y=\sqrt{\mathcal{P}(x)}$ in a neighbourhood of P, where $y^{2}=\mathcal{P}(x)$ is the equation of the generalized Cayley curve.

Generalized Weyr's Theorem

Each quadric \mathcal{Q} in $\mathbf{P}^{2 d-1}$ contains at most two unirational families of $(d-1)$-dimensional linear subspaces. Such unirational families are usually called rulings of the quadric.

Generalized Weyr's Theorem

Let $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ be two general quadrics in $\mathbf{P}^{2 d-1}$ with the smooth intersection V and $\mathcal{R}_{1}, \mathcal{R}_{2}$ their rulings. If there exists a closed chain

$$
L_{1}, L_{2}, \ldots, L_{2 n}, L_{2 n+1}=L_{1}
$$

of distinct ($d-1$)-dimensional linear subspaces, such that $L_{2 i-1} \in \mathcal{R}_{1}, L_{2 i} \in \mathcal{R}_{2}(1 \leq i \leq n)$ and $L_{j} \cap L_{j+1} \in F(V)$ ($1 \leq j \leq 2 n$), then there are such closed chains of subspaces of length $2 n$ through any point of $F(V)$.

Generalized Weyr's Chains and Poncelet Polygons

Definition

We will call the chains considered in the Generalized Weyr's theorem generalized Weyr's chains.

Proposition

A generalized Weyr chain of length $2 n$ projects into a Poncelet polygon of length $2 n$ circumscribing the quadrics $\mathcal{Q}_{\alpha_{1}}^{p}, \ldots, \mathcal{Q}_{\alpha_{d-1}}^{p}$ and alternately inscribed into two fixed confocal quadrics (projections of $\mathcal{Q}_{1}, \mathcal{Q}_{2}$). Conversely, any such a Poncelet polygon of the length $2 n$ circumscribing the quadrics $\mathcal{Q}_{\alpha_{1}}^{p}, \ldots, \mathcal{Q}_{\alpha_{d-1}}^{p}$ and alternately inscribed into two fixed confocal quadrics can be lifted to a generalized Weyr chain of length $2 n$.

Higher-Dimensional Generalization of the Griffiths-Harris Space Poncelet Theorem

Theorem

Let \mathcal{Q}_{1}^{*} and \mathcal{Q}_{2}^{*} be the duals of two general quadrics in $\mathbf{P}^{2 d-1}$ with the smooth intersection V. Denote by $\mathcal{R}_{i}, \mathcal{R}_{i}^{\prime}$ pairs of unirational families of $(d-1)$-dimensional subspaces of \mathcal{Q}_{i}^{*}. Suppose there are generalized Weyr's chains between \mathcal{R}_{1} and \mathcal{R}_{2} and between \mathcal{R}_{1} and \mathcal{R}_{2}^{\prime}. Then there is a finite polyhedron inscribed and subscribed in both quadrics \mathcal{Q}_{1} and \mathcal{Q}_{2}. There are infinitely many such polyhedra.

Poncelet-Darboux Grid in Euclidean Plane

Theorem

Let \mathcal{E} be an ellipse in \mathbf{E}^{2} and $\left(a_{m}\right)_{m \in \mathbf{Z}},\left(b_{m}\right)_{m \in \mathbf{Z}}$ be two sequences of the segments of billiard trajectories \mathcal{E}, sharing the same caustic. Then all the points $a_{m} \cap b_{m}(m \in \mathbf{Z})$ belong to one conic \mathcal{K}, confocal with \mathcal{E}.

Moreover, under the additional assumption that the caustic is an ellipse, we have: if both trajectories are winding in the same direction about the caustic, then \mathcal{K} is also an ellipse; if the trajectories are winding in opposite directions, then \mathcal{K} is a hyperbola.

For a hyperbola as a caustic, it holds: if segments a_{m}, b_{m} intersect the long axis of \mathcal{E} in the same direction, then \mathcal{K} is a hyperbola, otherwise it is an ellipse.

Grids in Arbitrary Dimension

Theorem
Let $\left(a_{m}\right)_{m \in \mathbf{Z}},\left(b_{m}\right)_{m \in \mathbf{Z}}$ be two sequences of the segments of billiard trajectories within the ellipsoid \mathcal{E} in \mathbf{E}^{d}, sharing the same $d-1$ caustics. Suppose the pair $\left(a_{0}, b_{0}\right)$ is s-skew, and that by the sequence of reflections on quadrics $\mathcal{Q}^{1}, \ldots, \mathcal{Q}^{s+1}$ the minimal billiard trajectory connecting a_{0} to b_{0} is realized.
Then, each pair $\left(a_{m}, b_{m}\right)$ is s-skew, and the minimal billiard trajectory connecting these two lines is determined by the sequence of reflections on the same quadrics $\mathcal{Q}^{1}, \ldots, \mathcal{Q}^{s+1}$.

Kandinsky, Grid 1923.

Continued Fractions

Given a polynomial X of degree $2 g+2$ in x. We suppose that X is not a square of a polynomial. Assuming that the values of y and ϵ are finite and fixed, we are going to study HH elements in a neighborhood of ϵ. Then, X can be considered as a polynomial of degree $2 g+2$ in s, where $s=x-\epsilon$ is chosen as a variable in a neighborhood of ϵ.

Basic Algebraic Lemma

Let X be a polynomial of degree $2 g+2$ in x and $Y=X(y)$ its value at a given fixed point y. Then, there exists a unique triplet of polynomials A, B, C with $\operatorname{deg} A=g+1$, $\operatorname{deg} B=\operatorname{deg} C=g$ in x such that

$$
\frac{\sqrt{X}-\sqrt{Y}}{x-y}-C=\frac{B(x-\epsilon)^{g+1}}{\sqrt{X}+A}
$$

Hyperelliptic Halphen-Type Continued Fractions

Factorization of the polynomial $B: B(s)=B_{g} \prod_{i=1}^{g}\left(s-t_{1}^{i}\right)$.
Denote $A\left(t_{1}^{i}\right)=-\sqrt{Y_{1}^{i}}$.
Then $\frac{A+\sqrt{X}}{s-t_{1}^{i}}=P_{A}^{g}\left(t_{1}^{i}, s\right)+\frac{\sqrt{X}-\sqrt{Y_{1}^{i}}}{x-y_{1}^{i}}$.
P_{A}^{g} is a certain polynomial of degree g in s.
Coefficients of P_{A}^{g} depend on the coefficients of A and t_{1}^{i}.
Denote $Q_{0}=\frac{\sqrt{X}-\sqrt{Y}}{x-y}-C$.
Then we have

$$
Q_{0}=\frac{B_{g} \prod_{j=1, j \neq i}^{g}\left(s-t_{1}^{j}\right) s^{g+1}}{P_{A}^{g}\left(t_{1}^{i}, s\right)+\frac{\sqrt{X}-\sqrt{Y_{1}^{i}}}{x-y_{1}^{i}}}
$$

Applying Basic Algebraic Lemma we obtain the polynomials $A^{(1, i)}, B^{(1, i)}, C^{(1, i)}$ of degree $g+1, g, g$ respectively, such that

$$
\frac{\sqrt{X}-\sqrt{Y_{1}^{i}}}{x-y_{1}^{i}}-C^{(1, i)}=\frac{B^{(1, i)}(x-\epsilon)^{g+1}}{\sqrt{X}+A^{(1, i)}}
$$

Denote $\alpha_{1}^{(i)}:=P_{A}^{g}\left(t_{1}^{i}, s\right), \beta_{1}^{(i)}:=B_{g} \prod_{j=1, j \neq i}^{g}\left(s-t_{1}^{j}\right) s^{g+1}$.

Introduce $Q_{1}^{(i)}$ by the equation: $Q_{0}=\frac{\beta_{1}^{(i)}}{\alpha_{1}^{(i)}+Q_{1}^{(i)}}$.
Observe that $\operatorname{deg} \alpha_{1}^{(i)}=g$ and $\operatorname{deg} \beta_{1}^{(i)}=2 g$.

Now, one can go further, step by step:

- factorize $B^{(1, i)}$;
- choose one of its zeroes t_{2}^{j};
- denote by $B^{i, j}:=B^{(1, i)} /\left(s-t_{2}^{j}\right)$.

Denote $\alpha_{2}^{(i, j)}:=P_{A^{1, i}} g\left(t_{2}^{j}, s\right), \beta_{2}^{(i, j)}:=B^{i, j} s^{g+1}$.

Calculate $Q_{2}^{(i, j)}$ from the equation

$$
Q_{1}^{(i)}=\frac{\beta_{2}^{(i, j)}}{\alpha_{2}^{(i, j)}+Q_{2}^{(i, j)}}
$$

Following the same scheme, in the i-th step we introduce polynomials:
$A^{\left(i, j_{1}, \ldots, j_{i}\right)}, B^{\left(i, j_{1}, \ldots, j_{i}\right)}, C^{\left(i, j_{1}, \ldots, j_{i}\right)}$, with degrees $\operatorname{deg} A=g+1, \operatorname{deg} B=g, \operatorname{deg} C=g$.

They satisfy the equations:

$$
\begin{aligned}
A^{\left(i, j_{1}, \ldots, j_{i}\right)} & =C^{\left(i, j_{1}, \ldots, j_{i}\right)}\left(s-t_{i}^{j_{1}, \ldots, j_{i}}\right)+\sqrt{Y_{i}^{j_{1}, \ldots, j_{i}}}, \\
X-A^{\left(i, j_{1}, \ldots, j_{i}\right) 2} & =B^{\left(i, j_{1}, \ldots, j_{i}\right)} s^{g+1}\left(s-t_{i}^{j_{1}, \ldots, j_{i}}\right) .
\end{aligned}
$$

For $g>1$, the formulae of the $i+1$-th step depend on:

- the choice of one of the roots of the polynomial $B^{(i)}$;
- the choices from the previous steps.

To avoid abuse of notations we omit the indices j_{1}, \ldots, j_{i}, which indicate the choices done in the first i steps, although we assume all the time that the choice has been done.

According to the notations:

$s-t_{i} \mid B^{(i-1)}$
$B^{(i-1)}=\frac{\beta_{i}}{s^{g+1}}\left(s-t_{i}\right)$ or $B^{(i)}=\hat{\beta}_{i+1}\left(s-t_{i+1}\right)$,
where $\hat{\beta}_{i}=\beta_{i} / s^{g+1}$.
We have

$$
\begin{gathered}
X-A^{(i-1) 2}=\hat{\beta}_{i}\left(s-t_{i-1}\right) s^{g+1}\left(s-t_{i}\right), \\
X-A^{(i) 2}=\hat{\beta}_{i+1}\left(s-t_{i+1}\right) s^{g+1}\left(s-t_{i}\right) \\
A^{(i)}\left(t_{i}\right)=\sqrt{Y_{i}}, \\
A^{(i-1)}\left(t_{i}\right)=-\sqrt{Y_{i}} .
\end{gathered}
$$

We introduce λ_{i} by the relation $A_{g+1}^{(i)}=\sqrt{p_{0}} \lambda_{i}$.
Theorem 1
If λ_{i} is fixed, then t_{i} and $\left\{t_{i+1}^{(1)}, \ldots, t_{i+1}^{(g)}\right\}$ are the roots of polynomial equation of degree $g+1$ in s

$$
Q_{X}\left(\lambda_{i}, s\right)=0
$$

Theorem 2
If t_{i} is fixed, then λ_{i} and λ_{i-1} are the roots of the polynomial equation of degree 2 in λ :

$$
Q_{X}\left(\lambda_{i-1}, t_{i}\right)=0, \quad Q_{X}\left(\lambda_{i}, t_{i}\right)=0
$$

Periodicity and Symmetry

According to Theorem 2, in the case $t_{h}=t_{k}$ for some h, k, there are two possibilities:
(I) $\quad \lambda_{h-1}=\lambda_{k-1}, \quad \lambda_{h}=\lambda_{k} ;$
(II) $\quad \lambda_{h-1}=\lambda_{k}, \quad \lambda_{h}=\lambda_{k-1}$.

The first possibility leads to periodicity:

$$
t_{h+s}=t_{k+s}, \quad \lambda_{h+s}=\lambda_{k+s}
$$

for any s and with appropriate choice of roots.
If $p=h-k$ and $r \cong s(\bmod p)$ then $\alpha_{r}=\alpha_{s}, \quad \beta_{r}=\beta_{s}$.
The second possibility leads to symmetry:

$$
t_{h+s}=t_{k-s}, \quad \lambda_{h+s}=\lambda_{k-s-1}
$$

for any s.

Definition

(i) If $h+k=2 n$ we say that HH c. f. is even symmetric with

$$
\alpha_{n-i}=\alpha_{n+i}, \quad \beta_{n-i}=\beta_{n+i-1} .
$$

for any i and with α_{n} as the centre of symmetry.
(ii) If $h+k=2 n+1$ we say that HH c. f . is odd symmetric with

$$
\alpha_{n-i}=\alpha_{n+i-1}, \quad \beta_{n-i}=\beta_{n+i}
$$

for any i and with β_{n} as the centre of symmetry.

Proposition 1

(A) If a HH c. f . is periodic with the period of $2 r$ and even symmetric with α_{n} as the centre, then it is also even symmetric with respect α_{n+r}.
(B) If a HH c. f . is periodic with the period of $2 r$ and odd symmetric with respect β_{n}, then it is also odd symmetric with respect β_{n+r}.
(C) If a HH c. f . is periodic with the period of $2 r-1$ and even symmetric with respect α_{n}, then it is also odd symmetric with respect β_{n+r}. The converse is also true.

Proposition 2

If a HH c. f . is double symmetric, then it is periodic. Moreover:
(A) If a HH c. f . is even symmetric with respect α_{m} and α_{n}, $n<m$ then the period is $2(n-m)$.
(B) If a HH c. f. is odd symmetric with respect β_{m} and $\beta_{n}, n<m$ then the period is $2(m-n)$.
(C) If a HH c. f . is even symmetric with respect α_{n} and β_{m}, then the period is $2(n-m)+1$ in the case $m \leq n$ and the period is $2(m-n)-1$ when $m>n$.

Observation

(i) A HH c. f. can be at the same time even symmetric and odd symmetric.
(ii) If $\lambda_{i}=\lambda_{i-1}$ then the symmetry is even; if $t_{i}=t_{i+1}$ then the symmetry is odd.

Proposition 3
An H. H. c. f. is even-symmetric with the central parameter y if $X(y)=0$.

Invariant Approach

We pass to the general case, with polynomial X of degree $2 g+2$.

Relation $Q_{X}(\lambda, s)=0$ defines a basic curve Γ_{X}.
G - genus of Γ_{X}
R_{e} - the ramification points of the projection of Γ_{X} to the s-plane We call them even-symmetric points of the basic curve.
R_{o+r} - the ramification points of the projection of Γ_{X} to the λ-plane
R_{o+r} is are the union of the odd-symmetric points and the gluing points.

From Proposition 3, we get $\operatorname{deg} R_{e}=2 g+2$.

By applying the Riemann-Hurvitz formula, we have:
$2-2 G=4-\operatorname{deg} R_{e}, 2-2 g=2(g+1)-\operatorname{deg} R_{o+r}$.
Thus genus $\left(\Gamma_{X}\right)=G=g$ and $\operatorname{deg} R_{o+r}=4 g$.

We get a birational morphism $f: \Gamma \rightarrow \Gamma_{X}$ by the formulae $f:(x, s) \mapsto(t, \lambda)$, where
$t=x, \lambda=\frac{1}{t^{g+1}}\left(\frac{s}{\sqrt{p_{0}}}-Q_{g}(t)\right), Q_{g}(t)=1+q_{1} t+\cdots+q_{g} t^{g}$.
f satisfies commuting relation $f \circ \tau_{\Gamma}=\tau_{\Gamma_{X}} \circ f$, where τ_{Γ} and $\tau_{\Gamma_{X}}$ are natural involutions on the hyperelliptic curves Γ and Γ_{X} respectively.

Multi-valued divisor dynamics

The inverse image of a value z of the function λ is a divisor of degree $g+1$:

$$
\lambda^{-1}(z)=: D(z), \quad \operatorname{deg} D(z)=g+1
$$

The HH-continued fractions development can be described as a multi-valued discrete dynamics of divisors $D_{k}^{j}=D\left(z_{k}^{j}\right)$. Lower index k denotes the k-th step of the dynamics; upper index j goes in the range from 1 to $(g+1) k$ denoting branches of multivaluedness.

$$
\begin{aligned}
& \left.D_{0}:=D\left(\lambda\left(P_{0}\right)\right)\right)=P_{0}^{1}+P_{0}^{2}+\cdots+P_{0}^{g+1}, \text { with } \lambda\left(P_{0}^{j}\right)=\lambda\left(P_{0}^{j}\right) \\
& D_{1}^{j}:=D\left(\lambda\left(\tau_{1}\left(P_{0}^{j}\right)\right)\right) \\
& D_{k-1}^{j}:=P_{k-1}^{(j, 1)}+\cdots+P_{k-1}^{(j,(\xi+1))}
\end{aligned}
$$

We get $g+1$ new divisors $D_{k}^{(j-1)(g+1)+1}:=D\left(\lambda\left(\tau \tau\left(P_{k-1}^{(j, 1)}\right)\right)\right)$, $I=1, \ldots, g+1$

In the case of genus one, this dynamics can be traced out from the 2 - 2 - correspondence $Q_{\Gamma}(\lambda, t)=0$.

There exist constants a, b, c, d, T such that for every i we have $\lambda_{i}=\frac{a \times\left(u_{i}+T\right)+b}{c \times\left(u_{i}+T\right)+d}$, where u is an uniformizing parameter on the elliptic curve.

$$
\begin{aligned}
u_{i+1} & =u_{i}+2 T \\
\lambda_{i+1} & =\frac{a x\left(u_{i}+3 T\right)+b}{c \times\left(u_{i}+3 T\right)+d}
\end{aligned}
$$

In the cases of higher genera the dynamics is much more complicated. Thus, we have to pass to the consideration of generalized Jacobians.

Remainders, Continuants and Approximation

We consider an HH c. f. of an element f :

$$
f=C+\frac{\beta_{1} \mid}{\mid \alpha_{1}}+\frac{\beta_{2} \mid}{\mid \alpha_{2}}+\ldots
$$

Together with the remainder of rank $i Q_{i}$, where $Q_{i}=\frac{B^{(i)} s^{g+1}}{\sqrt{X}+A^{(i)}}$, we consider:
the continuants $\left(G_{i}\right),\left(H_{i}\right)$ and
the convergents G_{i} / H_{i} such that: $\left[\begin{array}{ll}G_{m} & G_{m-1} \\ H_{m} & H_{m-1}\end{array}\right]=T_{C} T_{1} \cdots T_{m}$.
Here $T_{i}=\left[\begin{array}{cc}\alpha_{i} & 1 \\ \beta_{i} & 0\end{array}\right]$ and $T_{C}=\left[\begin{array}{cc}C & 1 \\ 1 & 0\end{array}\right]$.
By taking the determinant of the above matrix relation, we get:

$$
\begin{aligned}
& G_{m} H_{m-1}-G_{m-1} H_{m}=(-1)^{m-1} \beta_{1} \beta_{2} \ldots \beta_{m}=\delta_{m} s^{(g+1) m} \\
& \operatorname{deg} \delta_{m}=(g-1) m
\end{aligned}
$$

Proposition 4

The degree of the continuants is $\operatorname{deg} G_{m}=g(m+1)$, $\operatorname{deg} H_{m}=g m$.

Theorem 3
The polynomial $G_{m} H_{m-1}-H_{m} G_{m-1}$ is of degree $2 g m$. The first $(g+1) m$ coefficients are zero.

Theorem 4
If $X(\epsilon) \neq 0$ and $\epsilon \neq y$, then the element
$\hat{G}_{m}-\hat{H}_{m} \sqrt{X}=G_{m}-H_{m} \frac{\sqrt{X}-\sqrt{Y}}{x-y}$ has a zero of order
$(g+1)(m+1)$ at $s=0$.
If $H(0) \neq 0$ then the differences

$$
\frac{\sqrt{X}-\sqrt{Y}}{x-y}-\frac{G_{m}}{H_{m}}, \quad \sqrt{X}-\frac{\hat{G}_{m}}{\hat{H}_{m}}
$$

have developments starting with the order of $s^{(g+1)(m+1)}$.

