Integrable systems in perturbative quantum field theory

Rutger Boels
Niels Bohr International Academy, Copenhagen

ENIGMA 08

Largely based on

- 0805.1197 [hep-th] (with Christian Schwinn)
- hep-th/0702035, hep-th/0604040 (with David Skinner and Lionel Mason)
- 'the literature'

What am I selling today?

```
known
The self-cual Yang-Mills equations in 4 dimensions are integrable
[Penrose and Ward]
```

```
main idea in our work
Full equations as a nerturbation around self-dual sector [Mason, 05]
```

suspicion
The full Yanc--Mills equations in 4 dimensions are integrable

What am I selling today?

known
 The self-dual Yang-Mills equations in 4 dimensions are integrable [Penrose and Ward]

main idea in our work
 Full equations as a nerturbation around self-dual sector [Mason, 05]

suspicion
The full Yang-Mills equations in 4 dimensions are integrable

What am I selling today?

```
known
The self-dual Yang-Mills equations in 4 dimensions are integrable [Penrose and Ward]
```


main idea in our work

Full equations as a perturbation around self-dual sector [Mason, 05]

The full Yang-Mills equations in 4 dimensions are integrable

What am I selling today?

known

The self-dual Yang-Mills equations in 4 dimensions are integrable [Penrose and Ward]

main idea in our work

Full equations as a perturbation around self-dual sector [Mason, 05]

suspicion

The full Yang-Mills equations in 4 dimensions are integrable

The big picture

Some definitions and terminology

- Standard model of particle physics is a Yang-Mills theory
- \rightarrow Yang-Mills equations predict experimental outcomes

Some definitions and terminology

- Standard model of particle physics is a Yang-Mills theory
- \rightarrow Yang-Mills equations predict experimental outcomes

Pure Yang-Mills theory

ingredients:

- A the gauge field: a Lie-algebra valued connection 1-form of a fibre bundle over \mathbb{R}^{4} (say $U(N)$)
- $F=d A+g(A \wedge A)$ its curvature 2 form
- g the coupling constant
- $S=\operatorname{Tr} \int F \wedge * F$ the Yang-Mills action

- equations non-linear if $g \neq 0$
- boundary conditions describe the experiment/process under study

Some definitions and terminology

- Standard model of particle physics is a Yang-Mills theory
- \rightarrow Yang-Mills equations predict experimental outcomes

Pure Yang-Mills theory

 ingredients:- A the gauge field: a Lie-algebra valued connection 1-form of a fibre bundle over \mathbb{R}^{4} (say $U(N)$)
- $F=d A+g(A \wedge A)$ its curvature 2 form
- g the coupling constant
- $S=\operatorname{Tr} \int F \wedge * F$ the Yang-Mills action
- $\frac{\partial S}{\partial A}=0$ are the Yang-Mills equations
- equations non-linear if $g \neq 0$
- boundary conditions describe the experiment/process under study

Some definitions and terminology

- Standard model of particle physics is a Yang-Mills theory
- \rightarrow Yang-Mills equations predict experimental outcomes

Pure Yang-Mills theory

 ingredients:- A the gauge field: a Lie-algebra valued connection 1-form of a fibre bundle over \mathbb{R}^{4} (say $U(N)$)
- $F=d A+g(A \wedge A)$ its curvature 2 form
- g the coupling constant
- $S=\operatorname{Tr} \int F \wedge * F$ the Yang-Mills action
- $\frac{\partial S}{\partial A}=0$ are the Yang-Mills equations
- equations non-linear if $g \neq 0$
- boundary conditions describe the experiment/process under study

From actions to amplitudes

- want: solve Yang-Mills equations with plane-wave asymptotics.
- \rightarrow scattering amplitudes in perturbative series in g
- well-defined procedure to calculate these in terms of path integrals (cf. math-ph/0204014)
- scattering data: Lorentz group rep (P_{μ} and polarization)
some scattering amplitudes are very, very simple [80's]
- $A(++\ldots+)=0, A(-+\ldots+)=0, A(--+\ldots+)=$ simple
- despite rapid growth ($\sim n^{2}$) of ordinary diagram complexity

From actions to amplitudes

- want: solve Yang-Mills equations with plane-wave asymptotics.
- \rightarrow scattering amplitudes in perturbative series in g
- well-defined procedure to calculate these in terms of path integrals (cf. math-ph/0204014)
- scattering data: Lorentz group rep (P_{μ} and polarization)

some scattering amplitudes are very, very simple [80's]
- $A(++\ldots+)=0, A(-+\ldots+)=0, A(--+\ldots+)=$ simple
- despite rapid growth ($\sim n^{2}$) of ordinary diagram complexity

From actions to amplitudes

- want: solve Yang-Mills equations with plane-wave asymptotics.
- \rightarrow scattering amplitudes in perturbative series in g
- well-defined procedure to calculate these in terms of path integrals (cf. math-ph/0204014)
- scattering data: Lorentz group rep (P_{μ} and polarization)
- Hodge $*$ projects 2 forms onto ± 1 eigenvalues: self-dual and anti-selfdual.
- (anti) self-dual connections A solve full Yang-Mills equations.
- example: polarization of external fields (helicity)
\square
some scattering amplitudes are very, very simple [80's]
- despite rapid growth ($\sim n^{2}$) of ordinary diagram complexity

From actions to amplitudes

- want: solve Yang-Mills equations with plane-wave asymptotics.
- \rightarrow scattering amplitudes in perturbative series in g
- well-defined procedure to calculate these in terms of path integrals (cf. math-ph/0204014)
- scattering data: Lorentz group rep (P_{μ} and polarization)
- Hodge $*$ projects 2 forms onto ± 1 eigenvalues: self-dual and anti-selfdual.
- (anti) self-dual connections A solve full Yang-Mills equations.
- example: polarization of external fields (helicity)
some scattering amplitudes are very, very simple [80's]
- despite rapid growth ($\sim n^{2}$) of ordinary diagram complexity

From actions to amplitudes

- want: solve Yang-Mills equations with plane-wave asymptotics.
- \rightarrow scattering amplitudes in perturbative series in g
- well-defined procedure to calculate these in terms of path integrals (cf. math-ph/0204014)
- scattering data: Lorentz group rep (P_{μ} and polarization)
- Hodge $*$ projects 2 forms onto ± 1 eigenvalues: self-dual and anti-selfdual.
- (anti) self-dual connections A solve full Yang-Mills equations.
- example: polarization of external fields (helicity)

surprise

some scattering amplitudes are very, very simple [80's]

- $A(++\ldots+)=0, A(-+\ldots+)=0, A(--+\ldots+)=$ simple
- despite rapid growth $\left(\sim n^{2}\right)$ of ordinary diagram complexity

Theorem (Ward-Penrose correspondence [\sim 75]) selfdual solutions to the Yang-Mills equations on $\mathbb{R}^{4}\left(S^{4}\right)$ (on to one) holomorphic flat vector bundles on $\mathbb{C P}^{3}$

- $C P^{3}$ is the projective twistor of four dimensional space
- Euclidean: locally, $C P^{3}=R^{4} \times \mathbb{C P}^{1}(1)$ forms, Lie algebra valued connection a, weight 0 , adjoint valued b, weight -4

- b-field equation: $F[a]=0$ (zero curvature)
- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

Theorem (Ward-Penrose correspondence [\sim 75])
selfdual solutions to the Yang-Mills equations on $\mathbb{R}^{4}\left(S^{4}\right)$ (on to one) holomorphic flat vector bundles on $\mathbb{C P}^{3}$

- $C P^{3}$ is the projective twistor of four dimensional space
- Euclidean: locally, $C P^{3}=R^{4} \times \mathbb{C P}^{1}$
- (see [Woodhouse, 85]) ingredients: (0,1) forms, Lie algebra valued connection a, weight 0 , adjoint valued b, weight -4

- b-field equation: $F[a]=0$ (zero curvature)
- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

Theorem (Ward-Penrose correspondence [\sim 75])

selfdual solutions to the Yang-Mills equations on $\mathbb{R}^{4}\left(S^{4}\right)$ (on to one)

holomorphic flat vector bundles on $\mathbb{C P}^{3}$

- $C P^{3}$ is the projective twistor of four dimensional space
- Euclidean: locally, $C P^{3}=R^{4} \times \mathbb{C P}^{1}$
- (see [Woodhouse, 85$]$) ingredients: $(0,1)$ forms, Lie algebra valued connection a, weight 0 , adjoint valued b, weight -4
- b-field equation: $F[a]=0$ (zero curvature)

Theorem (Ward-Penrose correspondence [~ 75])

selfdual solutions to the Yang-Mills equations on $\mathbb{R}^{4}\left(S^{4}\right)$ (on to one) holomorphic flat vector bundles on $\mathbb{C P}^{3}$

- $C P^{3}$ is the projective twistor of four dimensional space
- Euclidean: locally, $C P^{3}=R^{4} \times \mathbb{C P}^{1}$
- (see [Woodhouse, 85$]$) ingredients: $(0,1)$ forms, Lie algebra valued connection a, weight 0 , adjoint valued b, weight -4

in action terms

$$
S=\operatorname{Tr} \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a)
$$

- b-field equation: $F[a]=0$ (zero curvature)
- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

Self-dual Yang-Mills theory as an integrable system

$$
S=\operatorname{Tr} \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a)
$$

- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

$$
\begin{aligned}
\partial_{0}^{\dagger} a_{0}=\partial_{0}^{\dagger} b_{0}=0 & \rightarrow S=\int_{\mathbb{R}^{4}} B \wedge F_{+}[A] \\
\eta \hookrightarrow a=\eta \hookrightarrow b=0 & \rightarrow S=\int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge \bar{\partial} a
\end{aligned}
$$

- 4D field theory (known as self-dual YM) as an integrable system puzzle: (classically), while the twistor system is free
resolution:
[Ettle-Fu-Fudger-Mansfield-Morris, 07]

Self-dual Yang-Mills theory as an integrable system

$$
S=\operatorname{Tr} \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a)
$$

- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

$$
\begin{aligned}
\partial_{0}^{\dagger} a_{0}=\partial_{0}^{\dagger} b_{0}=0 & \rightarrow S=\int_{\mathbb{R}^{4}} B \wedge F_{+}[A] \\
\eta \hookrightarrow a=\eta \hookrightarrow b=0 & \rightarrow S=\int_{\mathbb{C R}^{3}} d \Omega \wedge b \wedge \bar{\partial} a
\end{aligned}
$$

- 4D field theory (known as self-dual YM) as an integrable system puzzle: (classically), while the twistor system is free resolution:

Self-dual Yang-Mills theory as an integrable system

$$
S=\operatorname{Tr} \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a)
$$

- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

$$
\begin{aligned}
\partial_{0}^{\dagger} a_{0}=\partial_{0}^{\dagger} b_{0}=0 & \rightarrow S=\int_{\mathbb{R}^{4}} B \wedge F_{+}[A] \\
\eta \hookrightarrow a=\eta \hookrightarrow b=0 & \rightarrow S=\int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge \bar{\partial} a
\end{aligned}
$$

- 4D field theory (known as self-dual YM) as an integrable system puzzle:
- Space-time SD YM \rightarrow one non-trivial scattering amplitude $\mathrm{A}(++-)$ (classically), while the twistor system is free resolution:
[Ettle-Fu-Fudger-Mansfield-Morris, 07]

Self-dual Yang-Mills theory as an integrable system

$$
S=\operatorname{Tr} \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a)
$$

- local gauge symmetry, $b \rightarrow b+\partial_{a} f+[a, g], a \rightarrow a+\partial_{a} g$

$$
\begin{aligned}
\partial_{0}^{\dagger} a_{0}=\partial_{0}^{\dagger} b_{0}=0 & \rightarrow S=\int_{\mathbb{R}^{4}} B \wedge F_{+}[A] \\
\eta \hookrightarrow a=\eta \hookrightarrow b=0 & \rightarrow S=\int_{\mathbb{C R}^{3}} d \Omega \wedge b \wedge \bar{\partial} a
\end{aligned}
$$

- 4D field theory (known as self-dual YM) as an integrable system puzzle:
- Space-time SD YM \rightarrow one non-trivial scattering amplitude A(++-) (classically), while the twistor system is free resolution:
- Scattering amplitude is part of the field transformation (cf. KdV) [Ettle-Fu-Fudger-Mansfield-Morris, 07]

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lc}
\mathbb{C P}^{3} \\
\mathbb{R}^{4} & \int_{\mathbb{P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) \\
\int_{\mathbb{R}^{4}} B \wedge F_{+} & +? \\
\int_{\mathbb{R}^{4}} F \wedge * F
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 / 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:

$$
H=H[a]
$$

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lc}
\mathbb{C P}^{3} \\
\mathbb{R}^{4} & \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) \\
\int_{\mathbb{R}^{4}} B \wedge F_{+} & +? \\
\int_{\mathbb{R}^{4}} F_{+} \wedge * F_{+}+\text {top }
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 / 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:
$S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H_{b} H^{-1}\right)_{2}\langle 12\rangle^{2}$

$$
H=H[a]
$$

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lc}
\mathbb{C P}^{3} & \int_{\mathbb{R}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) \\
\int_{\mathbb{R}^{4}} B \wedge F_{+} & +? \\
\int_{\mathbb{R}^{4}} B \wedge F_{+}-\frac{1}{2} B \wedge * B
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 / 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:

$$
H=H[a]
$$

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lcc}
\mathbb{C P}^{3} & \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) & +? \\
\mathbb{R}^{4} & \int_{\mathbb{R}^{4}} B \wedge F_{+} & \int_{\mathbb{R}^{4}} B \wedge F_{+}-\frac{1}{2} B \wedge * B
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 \mid 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:

$$
H=H[a]
$$

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lcc}
\mathbb{C P}^{3} & \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) & +? \\
\mathbb{R}^{4} & \int_{\mathbb{R}^{4}} B \wedge F_{+} & \int_{\mathbb{R}^{4}} B \wedge F_{+}-\frac{1}{2} B \wedge * B
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 \mid 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:

$$
H=H[a]
$$

Full Yang-Mills

summary of knowledge up to 2003

$$
\begin{array}{lcc}
\mathbb{C P}^{3} & \int_{\mathbb{C P}^{3}} d \Omega \wedge b \wedge(\bar{\partial} a+g a \wedge a) & +? \\
\mathbb{R}^{4} & \int_{\mathbb{R}^{4}} B \wedge F_{+} & \int_{\mathbb{R}^{4}} B \wedge F_{+}-\frac{1}{2} B \wedge * B
\end{array}
$$

- In dec. 2003 Witten proposed 'twistor string theory' (also [Nair, 88])
- Amplitudes from topological B-model on supertwistor space $\mathbb{C P}^{3 \mid 4}$ ('super Calabi-Yau')
- Very inspiring in the physical community (~ 400 citations)
- [Mason 2005] and our work provides missing term:

$$
\begin{gathered}
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{2}\langle 12\rangle^{2} \\
H=H[a]
\end{gathered}
$$

So what does that term do?

$$
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{1}\langle 12\rangle^{2}
$$

$$
\begin{gathered}
\left(\bar{\partial}_{0}+a_{0}\right) H\left[a_{0}\right]=0 \\
S_{\mathrm{miss}} \sim \sum_{i=0}^{\infty}\left(\sum_{j=1}^{i} b a \ldots b_{j} \ldots a\right)
\end{gathered}
$$

- use same transformation to action angle coordinates as before
- interpolates between usual Yang-Mills eqns and 'CSW rules'
- generates those ‘simple’ scattering amplitudes mentioned before
- re-orders complicated perturbation theory
- \rightarrow perturbation around an integrable system!

So what does that term do?

$$
\begin{gathered}
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{1}\langle 12\rangle^{2} \\
\left(\bar{\partial}_{0}+a_{0}\right) H\left[a_{0}\right]=0 \\
S_{\text {miss }} \sim \sum_{i=0}^{\infty}\left(\sum_{j=1}^{i} b a \ldots b_{j} \ldots a\right)
\end{gathered}
$$

- use same transformation to action angle coordinates as before
- interpolates between usual Yang-Mills eqns and 'CSW rules'
- generates those 'simple’ scattering amplitudes mentioned before
- re-orders complicated perturbation theory
- \rightarrow perturbation around an integrable system!

So what does that term do?

$$
\begin{gathered}
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{1}\langle 12\rangle^{2} \\
\left(\bar{\partial}_{0}+a_{0}\right) H\left[a_{0}\right]=0 \\
S_{\text {miss }} \sim \sum_{i=0}^{\infty}\left(\sum_{j=1}^{i} b a \ldots b_{j} \ldots a\right)
\end{gathered}
$$

- use same transformation to action angle coordinates as before
- interpolates between usual Yang-Mills eqns and 'CSW rules'
- generates those 'simple’ scattering amplitudes mentioned before
- re-orders complicated perturbation theory
- \rightarrow perturbation around an integrable system!

So what does that term do?

$$
\begin{gathered}
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{1}\langle 12\rangle^{2} \\
\left(\bar{\partial}_{0}+a_{0}\right) H\left[a_{0}\right]=0 \\
S_{\text {miss }} \sim \sum_{i=0}^{\infty}\left(\sum_{j=1}^{i} b a \ldots b_{j} \ldots a\right)
\end{gathered}
$$

- use same transformation to action angle coordinates as before
- interpolates between usual Yang-Mills eqns and 'CSW rules'
- generates those 'simple' scattering amplitudes mentioned before
- re-orders complicated perturbation theory
$\stackrel{\rightarrow}{ } \rightarrow$ perturbation around an integrable system!

So what does that term do?

$$
\begin{gathered}
S_{\text {miss }}=\int_{\mathbb{R}^{4} \times \mathbb{C P}^{1} \times \mathbb{C P}^{1}} d^{4} x \wedge d k_{1} \wedge d k_{2} \wedge\left(H b H^{-1}\right)_{1} \wedge\left(H b H^{-1}\right)_{1}\langle 12\rangle^{2} \\
\left(\bar{\partial}_{0}+a_{0}\right) H\left[a_{0}\right]=0 \\
S_{\text {miss }} \sim \sum_{i=0}^{\infty}\left(\sum_{j=1}^{i} b a \ldots b_{j} \ldots a\right)
\end{gathered}
$$

- use same transformation to action angle coordinates as before
- interpolates between usual Yang-Mills eqns and 'CSW rules'
- generates those 'simple' scattering amplitudes mentioned before
- re-orders complicated perturbation theory
- \rightarrow perturbation around an integrable system!

Full Yang-Mills is integrable?

- twistor variables provide a transform to action-angle variables \rightarrow trivializes 1 three particle amplitude
- Yang-Mills has two three particle amplitudes $(A(++-)$ and $A(+--))$
- 'Other' three particle amplitude simplified on 'dual' twistor space
- Can you simplify both at the same time?
[Mason, Skinner, 05]

BCFW recursion Britto-Cachazo-Feng-Witten (05): every amplitude in Yang-Mills can be expressed in terms of certain sums over those 2 three particle amplitudes only.

- Is full Yang-Mills integrable?
- BCFW: reconstruction of scattering amplitudes through a field transformation?

Full Yang-Mills is integrable?

- twistor variables provide a transform to action-angle variables \rightarrow trivializes 1 three particle amplitude
- Yang-Mills has two three particle amplitudes $(A(++-)$ and $A(+--))$
- 'Other' three particle amplitude simplified on 'dual' twistor space
- Can you simplify both at the same time?
[Mason, Skinner, 05]
- Is full Yang-Mills integrable?
- BCFW: reconstruction of scattering amplitudes through a field transformation?

Full Yang-Mills is integrable?

- twistor variables provide a transform to action-angle variables \rightarrow trivializes 1 three particle amplitude
- Yang-Mills has two three particle amplitudes $(A(++-)$ and $A(+--))$
- 'Other' three particle amplitude simplified on 'dual' twistor space
- Can you simplify both at the same time?
- Is full Yang-Mills integrable?
- BCFW: reconstruction of scattering amplitudes through a field transformation?

Full Yang-Mills is integrable?

- twistor variables provide a transform to action-angle variables \rightarrow trivializes 1 three particle amplitude
- Yang-Mills has two three particle amplitudes $(A(++-)$ and $A(+--))$
- 'Other' three particle amplitude simplified on 'dual' twistor space
- Can you simplify both at the same time?
\rightarrow ambi-twistor space? [Mason, Skinner, 05]
- Is full Yang-Mills integrable?
- BCFW: reconstruction of scattering amplitudes through a field transformation?

Full Yang-Mills is integrable?

- twistor variables provide a transform to action-angle variables \rightarrow trivializes 1 three particle amplitude
- Yang-Mills has two three particle amplitudes $(A(++-)$ and $A(+--))$
- 'Other' three particle amplitude simplified on 'dual' twistor space
- Can you simplify both at the same time?
\rightarrow ambi-twistor space? [Mason, Skinner, 05]

BCFW recursion

Britto-Cachazo-Feng-Witten (05): every amplitude in Yang-Mills can be expressed in terms of certain sums over those 2 three particle amplitudes only.

- Is full Yang-Mills integrable?
- BCFW: reconstruction of scattering amplitudes through a field transformation?

More interesting ideas floating around

- similar constructions for physically interesting cases
- supersymmetry (very natural)
- massive gauge theories
- beginning of understanding of the quantum aspects (much harder)
- similar construction for Einstein gravity [Mason, Skinner, 08]

BCFW remarks

- BCFW works in 10 dimensions [Arkhani-Hamed, Kaplan, 08]
- recursive BCFW structure is very natural in string theory [Boels, Larsen, Obers, Vonk, 08]
- relation to topological strings? CFT?

More interesting ideas floating around

- similar constructions for physically interesting cases
- supersymmetry (very natural)
- massive gauge theories
- beginning of understanding of the quantum aspects (much harder)
- similar construction for Einstein gravity [Mason, Skinner, 08]

BCFW remarks

- BCFW works in 10 dimensions [Arkhani-Hamed, Kaplan, 08]
- recursive BCFW structure is very natural in string theory [Boels, Larsen, Obers, Vonk, 08]
- relation to topological strings? CFT?

Conclusions / questions

- Interesting developments from/with physical motivation
- New input/life for twistor theory and ideas

Questions:

- Is full Yang-Mills classically integrable?
- Is full (supersymmetric?) Yang-Mills quantum mechanically
integrable?
- Relation to other known types of integrability?
- Seiberg-Witten theory
- Matrix models? (Dijkgraaf-Vafa)

Conclusions / questions

- Interesting developments from/with physical motivation
- New input/life for twistor theory and ideas

Questions:

- Is full Yang-Mills classically integrable?
- Is full (supersymmetric?) Yang-Mills quantum mechanically integrable?
- Relation to other known types of integrability?
- Seiberg-Witten theory
- Matrix models? (Dijkgraaf-Vafa)

